Math 31 - Homework 3

Due Wednesday, July 10

Note: Any problem labeled as "show" or "prove" should be written up as a formal proof, using complete sentences to convey your ideas.

Easier

1. Let D_{4} be the 4 th dihedral group, which consists of symmetries of the square. Let $r \in D_{4}$ denote counterclockwise rotation by 90°, and let m denote reflection across the vertical axis.

Check that

$$
r m=m r^{-1}
$$

Conclude that D_{4} is a nonabelian group of order 8 .
2. We mentioned in class that elements of D_{n} can be thought of as permutations of the vertices of the regular n-gon. For example, the rotation r of the square mentioned in the last problem can be identified with the permutation

$$
\rho=\left(\begin{array}{llll}
1 & 2 & 3 & 4 \\
2 & 3 & 4 & 1
\end{array}\right)
$$

Write the reflection m as a permutation $\mu \in S_{4}$, and compute the product $\rho \mu$ in S_{4}. Then compute $r m \in D_{4}$, and write it as a permutation σ. Check that $\sigma=\rho \mu$. (In other words, this identification of symmetries of the square with permutations respects the group operations.)
3. Recall that if $*$ is a binary operation on a set S, an element x of S is an idempotent if $x * x=x$. Prove that a group has exactly one idempotent element.
4. Consider the group $\left\langle\mathbb{Z}_{30},+_{30}\right\rangle$ under addition.
(a) Find the orders of the elements $3,4,6,7$, and 18 in \mathbb{Z}_{30}.
(b) Find all the generators of $\left\langle\mathbb{Z}_{30},+{ }_{30}\right\rangle$.
5. Determine whether each of the following subsets is a subgroup of the given group. If not, state which of the subgroup axioms fails.
(a) The set of real numbers \mathbb{R}, viewed as a subset of the complex numbers \mathbb{C} (under addition).
(b) The set $\pi \mathbb{Q}$ of rational multiples of π, as a subset of \mathbb{R}.
(c) The set of $n \times n$ matrices with determinant 2 , as a subset of $\mathrm{GL}_{\mathrm{n}}(\mathbb{R})$.
(d) The set $\left\{i, m_{1}, m_{2}, m_{3}\right\} \subset D_{3}$ of reflections of the equilateral triangle, along with the identity transformation.

Medium

6. [Saracino, Section 4, \#25] Show that if G is a finite group and $|G|$ is even, then there is an element $a \in G$ such that $a \neq e$ and $a^{2}=e$.
7. [Saracino, Section 4, \#21] Let a and b be elements of a group G. Show that if $a b$ has finite order n, then $b a$ also has order n.
8. [Saracino, Section 4, \#20] Let G be a group and let $a \in G$. An element $b \in G$ is called a conjugate of a if there exists an element $x \in G$ such that $b=x a x^{-1}$. Show that any conjugate of a has the same order as a.
9. Let G be a group. If H and K are subgroups of G, show that $H \cap K$ is also a subgroup of G.
10. Let r and s be positive integers, and define

$$
H=\{n r+m s: n, m \in \mathbb{Z}\}
$$

(a) Show that H is a subgroup of \mathbb{Z}.
(b) We saw in class that every subgroup of \mathbb{Z} is cyclic. Therefore, $H=\langle d\rangle$ for some $d \in \mathbb{Z}$. What is this integer d ? Prove that the d you've found is in fact a generator for H.

