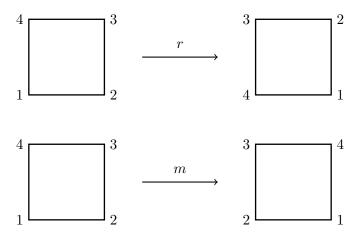
Math 31 - Homework 3 Due Wednesday, July 10

Note: Any problem labeled as "show" or "prove" should be written up as a formal proof, using complete sentences to convey your ideas.

Easier

1. Let D_4 be the 4th dihedral group, which consists of symmetries of the square. Let $r \in D_4$ denote counterclockwise rotation by 90°, and let *m* denote reflection across the vertical axis.



Check that

$$rm = mr^{-1}$$

Conclude that D_4 is a nonabelian group of order 8.

2. We mentioned in class that elements of D_n can be thought of as permutations of the vertices of the regular *n*-gon. For example, the rotation r of the square mentioned in the last problem can be identified with the permutation

$$\rho = \left(\begin{array}{rrrr} 1 & 2 & 3 & 4 \\ 2 & 3 & 4 & 1 \end{array}\right).$$

Write the reflection m as a permutation $\mu \in S_4$, and compute the product $\rho\mu$ in S_4 . Then compute $rm \in D_4$, and write it as a permutation σ . Check that $\sigma = \rho\mu$. (In other words, this identification of symmetries of the square with permutations respects the group operations.)

3. Recall that if * is a binary operation on a set S, an element x of S is an **idempotent** if x * x = x. Prove that a group has exactly one idempotent element.

- 4. Consider the group $\langle \mathbb{Z}_{30}, +_{30} \rangle$ under addition.
 - (a) Find the orders of the elements 3, 4, 6, 7, and 18 in \mathbb{Z}_{30} .
 - (b) Find all the generators of $\langle \mathbb{Z}_{30}, +_{30} \rangle$.

5. Determine whether each of the following subsets is a subgroup of the given group. If not, state which of the subgroup axioms fails.

- (a) The set of real numbers \mathbb{R} , viewed as a subset of the complex numbers \mathbb{C} (under addition).
- (b) The set $\pi \mathbb{Q}$ of rational multiples of π , as a subset of \mathbb{R} .
- (c) The set of $n \times n$ matrices with determinant 2, as a subset of $GL_n(\mathbb{R})$.
- (d) The set $\{i, m_1, m_2, m_3\} \subset D_3$ of reflections of the equilateral triangle, along with the identity transformation.

Medium

6. [Saracino, Section 4, #25] Show that if G is a finite group and |G| is even, then there is an element $a \in G$ such that $a \neq e$ and $a^2 = e$.

7. [Saracino, Section 4, #21] Let a and b be elements of a group G. Show that if ab has finite order n, then ba also has order n.

8. [Saracino, Section 4, #20] Let G be a group and let $a \in G$. An element $b \in G$ is called a *conjugate* of a if there exists an element $x \in G$ such that $b = xax^{-1}$. Show that any conjugate of a has the same order as a.

- **9.** Let G be a group. If H and K are subgroups of G, show that $H \cap K$ is also a subgroup of G.
- 10. Let r and s be positive integers, and define

$$H = \{nr + ms : n, m \in \mathbb{Z}\}.$$

- (a) Show that H is a subgroup of \mathbb{Z} .
- (b) We saw in class that every subgroup of \mathbb{Z} is cyclic. Therefore, $H = \langle d \rangle$ for some $d \in \mathbb{Z}$. What is this integer d? Prove that the d you've found is in fact a generator for H.